viernes, 30 de agosto de 2013

POLIEDROS REGULARES

Poliedros regulares, son aquellos cuyas caras son todas polígonos regulares, congruentes entre sí (de igual medida) y cuyos ángulos poliedros son iguales. Existen solamente 5 poliedros regulares: Tetraedro, Hexaedro, Octaedro, Dodecaedro,Icosaedro.
Para los geómetras  griegos, el estudio de los poliedros fue muy importante y conocieron la existencia de esos cinco únicos sólidos regulares, cuyo descubrimiento atribuyeron algunos al propio Pitágoras y a los que Platón recurrió incluso para explicar la creación del universo.  Sin embargo, no consta que conocieran un importante resultado relativo al número de vértices, aristas y caras de un poliedro convexo, observado ya por Descartes en 1640 y del que el matemático suizo Leonhard Euler dio una famosa demostración en 1752.  Euler demostró que, si se suma el número de caras y el número de vértices de un poliedro convexo y, del valor obtenido, se resta entonces el número de aristas, et resultado es siempre igual a 2. De este resultado, válido para todo poliedro convexo, se deduce fácilmente la existencia de únicamente cinco poliedros regulares.
Tetraedro
Hexaedro (cubo)
Octaedro
Dodecaedro
Icosaedro
4 caras (triángulos equiláteros)
6 caras (cuadrados)
8 caras (triángulos equiláteros)
12 caras (pentágonos regulares)
20 caras (triángulos equiláteros)
N° de caras
4
6
8
12
20
N° de vértices
4
8
6
20
12
N° de aristas
6
12
12
30
30
N° de lados de cada cara
3
4
3
5
3
N° aristas concurrentes en un vértice
3
3
4
3
5

No hay comentarios:

Publicar un comentario